
Disjoint Sets:
Naive Implementations

Alexander S. Kulikov
Steklov Institute of Mathematics at St. Petersburg

Russian Academy of Sciences

Data Structures Fundamentals
Algorithms and Data Structures

https://goo.gl/tLiWFc
https://goo.gl/EEJDQX


Outline

1 Overview

2 Naive Implementations



Maze: Is B Reachable from A?



Maze: Is B Reachable from A?

A
B



Maze: Is B Reachable from A?

A
B



Maze: Is B Reachable from A?

A

B



Maze: Is B Reachable from A?

A

B



Definition
A disjoint-set data structure supports the
following operations:

MakeSet(x) creates a singleton set {x}

Find(x) returns ID of the set
containing x:

if x and y lie in the same set, then
Find(x) = Find(y)
otherwise, Find(x) ̸= Find(y)

Union(x, y) merges two sets containing
x and y



Definition
A disjoint-set data structure supports the
following operations:

MakeSet(x) creates a singleton set {x}
Find(x) returns ID of the set
containing x:

if x and y lie in the same set, then
Find(x) = Find(y)
otherwise, Find(x) ̸= Find(y)

Union(x, y) merges two sets containing
x and y



Definition
A disjoint-set data structure supports the
following operations:

MakeSet(x) creates a singleton set {x}
Find(x) returns ID of the set
containing x:

if x and y lie in the same set, then
Find(x) = Find(y)

otherwise, Find(x) ̸= Find(y)

Union(x, y) merges two sets containing
x and y



Definition
A disjoint-set data structure supports the
following operations:

MakeSet(x) creates a singleton set {x}
Find(x) returns ID of the set
containing x:

if x and y lie in the same set, then
Find(x) = Find(y)
otherwise, Find(x) ̸= Find(y)

Union(x, y) merges two sets containing
x and y



Definition
A disjoint-set data structure supports the
following operations:

MakeSet(x) creates a singleton set {x}
Find(x) returns ID of the set
containing x:

if x and y lie in the same set, then
Find(x) = Find(y)
otherwise, Find(x) ̸= Find(y)

Union(x, y) merges two sets containing
x and y



Preprocess(maze)
for each cell c in maze:

MakeSet(c)
for each cell c in maze:

for each neighbor n of c:
Union(c, n)

IsReachable(A,B)
return Find(A) = Find(B)



Preprocess(maze)
for each cell c in maze:

MakeSet(c)
for each cell c in maze:

for each neighbor n of c:
Union(c, n)

IsReachable(A,B)
return Find(A) = Find(B)



Building a Network



Building a Network

1
MakeSet(1)



Building a Network

1

2

MakeSet(2)



Building a Network

1

2

3

MakeSet(3)



Building a Network

1

2

3
4

MakeSet(4)



Building a Network

1

2

3
4

Find(1) = Find(2)→ False



Building a Network

1

2

3
4



Building a Network

1

2

3
4

Union(3, 4)



Building a Network

1

2

3
4

5

MakeSet(5)



Building a Network

1

2

3
4

5



Building a Network

1

2

3
4

5

Union(3, 2)



Building a Network

1

2

3
4

5

Find(1) = Find(2)→ False



Building a Network

1

2

3
4

5



Building a Network

1

2

3
4

5

Union(1, 4)



Building a Network

1

2

3
4

5

Find(1) = Find(2)→ True



Outline

1 Overview

2 Naive Implementations



For simplicity, we assume that our n objects
are just integers 1, 2, . . . , n.



Using the Smallest Element as ID

Use the smallest element of a set as
its ID

Use array smallest[1 . . . n]:
smallest[i] stores the smallest element
in the set i belongs to



Using the Smallest Element as ID

Use the smallest element of a set as
its ID
Use array smallest[1 . . . n]:
smallest[i] stores the smallest element
in the set i belongs to



Example

{9, 3, 2, 4, 7} {5} {6, 1, 8}

1 2 3 4 5 6 7 8 9
1 2 2 2 5 1 2 1 2smallest



MakeSet(i)
smallest[i]← i

Find(i)
return smallest[i]

Running time: O(1)



MakeSet(i)
smallest[i]← i

Find(i)
return smallest[i]

Running time: O(1)



Union(i, j)
i_id← Find(i)
j_id← Find(j)
if i_id = j_id:

return
m← min(i_id, j_id)
for k from 1 to n:

if smallest[k] in {i_id, j_id}:
smallest[k]← m

Running time: O(n)



Union(i, j)
i_id← Find(i)
j_id← Find(j)
if i_id = j_id:

return
m← min(i_id, j_id)
for k from 1 to n:

if smallest[k] in {i_id, j_id}:
smallest[k]← m

Running time: O(n)



Current bottleneck: Union

What basic data structure allows for
efficient merging?
Linked list!
Idea: represent a set as a linked list, use
the list tail as ID of the set



Current bottleneck: Union
What basic data structure allows for
efficient merging?

Linked list!
Idea: represent a set as a linked list, use
the list tail as ID of the set



Current bottleneck: Union
What basic data structure allows for
efficient merging?
Linked list!

Idea: represent a set as a linked list, use
the list tail as ID of the set



Current bottleneck: Union
What basic data structure allows for
efficient merging?
Linked list!
Idea: represent a set as a linked list, use
the list tail as ID of the set



Example: merging two lists

79 3 2 4

86 1



Example: merging two lists

79 3 2 4

86 1



Pros:

Running time of Union is O(1)
Well-defined ID

Cons:

Running time of Find is O(n) as we
need to traverse the list to find its tail
Union(x, y) works in time O(1) only if
we can get the tail of the list of x and
the head of the list of y in constant
time!



Pros:
Running time of Union is O(1)

Well-defined ID
Cons:

Running time of Find is O(n) as we
need to traverse the list to find its tail
Union(x, y) works in time O(1) only if
we can get the tail of the list of x and
the head of the list of y in constant
time!



Pros:
Running time of Union is O(1)
Well-defined ID

Cons:

Running time of Find is O(n) as we
need to traverse the list to find its tail
Union(x, y) works in time O(1) only if
we can get the tail of the list of x and
the head of the list of y in constant
time!



Pros:
Running time of Union is O(1)
Well-defined ID

Cons:

Running time of Find is O(n) as we
need to traverse the list to find its tail
Union(x, y) works in time O(1) only if
we can get the tail of the list of x and
the head of the list of y in constant
time!



Pros:
Running time of Union is O(1)
Well-defined ID

Cons:
Running time of Find is O(n) as we
need to traverse the list to find its tail

Union(x, y) works in time O(1) only if
we can get the tail of the list of x and
the head of the list of y in constant
time!



Pros:
Running time of Union is O(1)
Well-defined ID

Cons:
Running time of Find is O(n) as we
need to traverse the list to find its tail
Union(x, y) works in time O(1) only if
we can get the tail of the list of x and
the head of the list of y in constant
time!



Example: merging two lists

79 3 2 4

86 1



Example: merging two lists

79 3 2 4

86 1



Example: merging two lists

79 3 2 4

86 1

Find(9) goes through all elements



Example: merging two lists

79 3 2 4

86 1

can we merge in a different way?



Example: merging two lists

79 3 2 4

86 1



Example: merging two lists

79 3 2 4

86 1



Example: merging two lists

79 3 2 4

86 1

instead of a list we get a tree



Example: merging two lists

79 3 2 4

86 1
we’ll see that representing sets as

trees gives a very efficient im-
plementation: nearly constant

amortized time for all operations


	Overview
	Naive Implementations

