
Priority Queues:
Binary Heaps

Alexander S. Kulikov
Steklov Institute of Mathematics at St. Petersburg

Russian Academy of Sciences

Data Structures Fundamentals
Algorithms and Data Structures

https://goo.gl/tLiWFc
https://goo.gl/EEJDQX


Outline
1 Binary Trees

2 Basic Operations

3 Complete Binary Trees

4 Pseudocode

5 Heap Sort

6 Final Remarks



Definition
Binary max-heap is a binary tree (each node
has zero, one, or two children) where the
value of each node is at least the values of
its children.

In other words
For each edge of the tree, the value of the
parent is at least the value of the child.



Definition
Binary max-heap is a binary tree (each node
has zero, one, or two children) where the
value of each node is at least the values of
its children.

In other words
For each edge of the tree, the value of the
parent is at least the value of the child.



Example: heap

42

29

14

11

7

18

18

12 7



Example: not a heap

10

5

3

19 6

17

25

25 6

7



Example: not a heap

10

5

3

19 6

17

25

25 6

7



Outline
1 Binary Trees

2 Basic Operations

3 Complete Binary Trees

4 Pseudocode

5 Heap Sort

6 Final Remarks



GetMax

42

29

14

11

7

18

18

12 7



GetMax

return the root
value

42

29

14

11

7

18

18

12 7



GetMax

return the root
value

42

29

14

11

7

18

18

12 7
running time: O(1)



Insert

42

29

14

11

7

18

18

12 7



Insert

42

29

14

11

7

18

18

12 7

attach a new
node to any leaf



Insert

attach a new
node to any leaf

42

29

14

11

7

32

18

18

12 7



Insert

42

29

14

11

7

32

18

18

12 7

this may vio-
late the heap
property



Insert

this may vio-
late the heap
property

42

29

14

11

7

32

18

18

12 7



Insert

42

29

14

11

7

32

18

18

12 7

to fix this, we
let the new
node sift up



SiftUp

42

29

14

11

7

32

18

18

12 7

for this, we
swap the prob-
lematic node
with its parent
until the prop-
erty is satisfied



SiftUp

42

29

14

11

32

7

18

18

12 7



SiftUp

42

29

14

11

32

7

18

18

12 7



SiftUp

42

32

14

11

29

7

18

18

12 7



SiftUp

42

32

14

11

29

7

18

18

12 7

invariant: heap
property is vio-
lated on at most
one edge



SiftUp

42

32

14

11

29

7

18

18

12 7

this edge gets
closer to the
root while sift-
ing up



SiftUp

42

32

14

11

29

7

18

18

12 7
running time: O(tree height)



ExtractMax

42

29

14

11

7

18

18

12 7



ExtractMax

42

29

14

11

7

18

18

12 7

replace the root
with any leaf



ExtractMax

replace the root
with any leaf

42

29

14

11

7

18

18

12 7



ExtractMax

replace the root
with any leaf

12

29

14

11

7

18

18

7



ExtractMax

12

29

14

11

7

18

18

7

again, this may
violate the heap
property



ExtractMax

again, this may
violate the heap
property

12

29

14

11

7

18

18

7



ExtractMax

12

29

14

11

7

18

18

7

to fix it, we let
the problematic
node sift down



SiftDown

12

29

14

11

7

18

18

7

for this, we
swap the prob-
lematic node
with larger child
until the heap
property is satis-
fied



SiftDown

12

29

14

11

7

18

18

7



SiftDown

29

12

14

11

7

18

18

7



SiftDown

29

12

14

11

7

18

18

7



SiftDown

29

14

12

11

7

18

18

7



SiftDown

29

14

12

11

7

18

18

7

we swap with
the larger child
which automat-
ically fixes one
of the two bad
edges



SiftDown

29

14

12

11

7

18

18

7
running time: O(tree height)



ChangePriority

42

29

14

11

7

18

18

12 7



ChangePriority

42

29

14

11

7

18

18

12 7

change the pri-
ority and let the
changed ele-
ment sift up or
down depend-
ing on whether
its priority de-
creased or in-
creased



ChangePriority
change the pri-
ority and let the
changed ele-
ment sift up or
down depend-
ing on whether
its priority de-
creased or in-
creased

42

29

14

11

7

18

18

12 7



ChangePriority
change the pri-
ority and let the
changed ele-
ment sift up or
down depend-
ing on whether
its priority de-
creased or in-
creased

42

29

14

11

7

18

18

35 7



ChangePriority

42

29

14

11

7

18

18

35 7



ChangePriority

42

29

14

11

7

18

35

18 7



ChangePriority

42

29

14

11

7

18

35

18 7



ChangePriority

42

29

14

11

7

35

18

18 7



ChangePriority

42

29

14

11

7

35

18

18 7
running time: O(tree height)



Remove

42

29

14

11

7

18

18

12 7



Remove

42

29

14

11

7

18

18

12 7

change the pri-
ority of the el-
ement to ∞,
let it sift up,
and then extract
maximum



Remove

42

29

14

11

7

18

18

12 7



Remove

42

29

14

11

7

18

∞

12 7



Remove

42

29

14

11

7

18

∞

12 7



Remove

42

29

14

11

7

∞

18

12 7



Remove

42

29

14

11

7

∞

18

12 7



Remove

∞

29

14

11

7

42

18

12 7



Remove

∞

29

14

11

7

42

18

12 7

now, call
ExtractMax()



Remove

∞

29

14

11

7

42

18

12 7



Remove

11

29

14 7

42

18

12 7



Remove

11

29

14 7

42

18

12 7



Remove

42

29

14 7

11

18

12 7



Remove

42

29

14 7

11

18

12 7



Remove

42

29

14 7

18

11

12 7



Remove

42

29

14 7

18

11

12 7



Remove

42

29

14 7

18

12

11 7



Remove

42

29

14 7

18

12

11 7
running time: O(tree height)



Summary

GetMax works in time O(1), all other
operations work in time O(tree height)

we definitely want a tree to be shallow



Summary

GetMax works in time O(1), all other
operations work in time O(tree height)
we definitely want a tree to be shallow



Outline
1 Binary Trees

2 Basic Operations

3 Complete Binary Trees

4 Pseudocode

5 Heap Sort

6 Final Remarks



How to Keep a Tree Shallow?

Definition
A binary tree is complete if all its levels are
filled except possibly the last one which is
filled from left to right.



Example: complete binary tree



Example: complete binary tree



Example: complete binary tree



Example: complete binary tree



Example: not complete binary tree



Example: not complete binary tree



Example: not complete binary tree



Example: not complete binary tree



First Advantage: Low Height

Lemma
A complete binary tree with n nodes has
height at most O(log n).



Proof
Complete the last level to get a full
binary tree on n′ ≥ n nodes and the
same number of levels ℓ.
Note that n′ ≤ 2n.
Then n′ = 2ℓ − 1 and hence
ℓ = log2(n′ + 1) ≤ log2(2n + 1) =
O(log n).



Second Advantage: Store as Array

42

29

14

11 13

7

18

18 12



Second Advantage: Store as Array

42
1

29
2

14
4

11
8

13
9

7
5

18
3

18
6

12
7



Second Advantage: Store as Array

42
1

29
2

14
4

11
8

13
9

7
5

18
3

18
6

12
7

parent(i) = ⌊ i
2⌋

leftchild(i) = 2i

rightchild(i) = 2i + 1



Second Advantage: Store as Array

42
1

29
2

14
4

11
8

13
9

7
5

18
3

18
6

12
7

42
1

29
2

18
3

14
4

7
5

18
6

12
7

11
8

13
9

parent(i) = ⌊ i
2⌋

leftchild(i) = 2i

rightchild(i) = 2i + 1



What do we pay for these advantages?

We need to keep the tree complete.
Which binary heap operations modify
the shape of the tree?
Only Insert and ExtractMax
(Remove changes the shape by calling
ExtractMax).



What do we pay for these advantages?
We need to keep the tree complete.

Which binary heap operations modify
the shape of the tree?
Only Insert and ExtractMax
(Remove changes the shape by calling
ExtractMax).



What do we pay for these advantages?
We need to keep the tree complete.
Which binary heap operations modify
the shape of the tree?

Only Insert and ExtractMax
(Remove changes the shape by calling
ExtractMax).



What do we pay for these advantages?
We need to keep the tree complete.
Which binary heap operations modify
the shape of the tree?
Only Insert and ExtractMax
(Remove changes the shape by calling
ExtractMax).



Keeping the Tree Complete

42

29

14

11

7

18

18 12



Keeping the Tree Complete

42

29

14

11

7

18

18 12

to insert an el-
ement, insert it
as a leaf in the
leftmost vacant
position in the
last level and let
it sift up



Keeping the Tree Complete

to insert an el-
ement, insert it
as a leaf in the
leftmost vacant
position in the
last level and let
it sift up

42

29

14

11 30

7

18

18 12



Keeping the Tree Complete

to insert an el-
ement, insert it
as a leaf in the
leftmost vacant
position in the
last level and let
it sift up

42

29

30

11 14

7

18

18 12



Keeping the Tree Complete

to insert an el-
ement, insert it
as a leaf in the
leftmost vacant
position in the
last level and let
it sift up

42

30

29

11 14

7

18

18 12



Keeping the Tree Complete

42

30

29

11 14

7

18

18 12

to extract the
maximum value,
replace the root
by the last leaf
and let it sift
down



Keeping the Tree Complete

to extract the
maximum value,
replace the root
by the last leaf
and let it sift
down

42

30

29

11 14

7

18

18 12



Keeping the Tree Complete

to extract the
maximum value,
replace the root
by the last leaf
and let it sift
down

14

30

29

11

7

18

18 12



Keeping the Tree Complete

to extract the
maximum value,
replace the root
by the last leaf
and let it sift
down

30

14

29

11

7

18

18 12



Keeping the Tree Complete

to extract the
maximum value,
replace the root
by the last leaf
and let it sift
down

30

29

14

11

7

18

18 12



Outline
1 Binary Trees

2 Basic Operations

3 Complete Binary Trees

4 Pseudocode

5 Heap Sort

6 Final Remarks



General Setting

maxSize is the maximum number of
elements in the heap

size is the size of the heap
H[1 . . .maxSize] is an array of length
maxSize where the heap occupies the
first size elements



General Setting

maxSize is the maximum number of
elements in the heap
size is the size of the heap

H[1 . . .maxSize] is an array of length
maxSize where the heap occupies the
first size elements



General Setting

maxSize is the maximum number of
elements in the heap
size is the size of the heap
H[1 . . .maxSize] is an array of length
maxSize where the heap occupies the
first size elements



Example

42
1

29
2

14
4

11
8

5
9

7
5

18
3

18
6

12
7

42
1

29
2

18
3

14
4

7
5

18
6

12
7

11
8

5
9

30
10

29
11

2
12

8
13

H

size = 9
maxSize = 13



Parent(i)
return ⌊ i

2⌋

LeftChild(i)
return 2i

RightChild(i)
return 2i + 1



SiftUp(i)
while i > 1 and H[Parent(i)] < H[i]:

swap H[Parent(i)] and H[i]
i← Parent(i)



SiftDown(i)
maxIndex← i
ℓ← LeftChild(i)
if ℓ ≤ size and H[ℓ] > H[maxIndex]:

maxIndex← ℓ

r← RightChild(i)
if r ≤ size and H[r] > H[maxIndex]:

maxIndex← r
if i ̸= maxIndex:

swap H[i] and H[maxIndex]
SiftDown(maxIndex)



Insert(p)
if size = maxSize:

return ERROR
size← size + 1
H[size]← p
SiftUp(size)



ExtractMax()
result← H[1]
H[1]← H[size]
size← size− 1
SiftDown(1)
return result



Remove(i)
H[i]←∞
SiftUp(i)
ExtractMax()



ChangePriority(i, p)
oldp← H[i]
H[i]← p
if p > oldp:

SiftUp(i)
else:

SiftDown(i)



Summary
The resulting implementation is

fast: all operations work in time
O(log n) (GetMax even works in O(1))

space efficient: we store an array of
priorities; parent-child connections are
not stored, but are computed on the fly
easy to implement: all operations are
implemented in just a few lines of code



Summary
The resulting implementation is

fast: all operations work in time
O(log n) (GetMax even works in O(1))
space efficient: we store an array of
priorities; parent-child connections are
not stored, but are computed on the fly

easy to implement: all operations are
implemented in just a few lines of code



Summary
The resulting implementation is

fast: all operations work in time
O(log n) (GetMax even works in O(1))
space efficient: we store an array of
priorities; parent-child connections are
not stored, but are computed on the fly
easy to implement: all operations are
implemented in just a few lines of code



Outline
1 Binary Trees

2 Basic Operations

3 Complete Binary Trees

4 Pseudocode

5 Heap Sort

6 Final Remarks



Sort Using Priority Queues

HeapSort(A[1 . . . n])
create an empty priority queue
for i from 1 to n:

Insert(A[i])
for i from n downto 1:

A[i]← ExtractMax()



The resulting algorithms is
comparison-based and has running time
O(n log n) (hence, asymptotically
optimal!).

Natural generalization of selection sort:
instead of simply scanning the rest of
the array to find the maximum value,
use a smart data structure.
Not in-place: uses additional space to
store the priority queue.



The resulting algorithms is
comparison-based and has running time
O(n log n) (hence, asymptotically
optimal!).
Natural generalization of selection sort:
instead of simply scanning the rest of
the array to find the maximum value,
use a smart data structure.

Not in-place: uses additional space to
store the priority queue.



The resulting algorithms is
comparison-based and has running time
O(n log n) (hence, asymptotically
optimal!).
Natural generalization of selection sort:
instead of simply scanning the rest of
the array to find the maximum value,
use a smart data structure.
Not in-place: uses additional space to
store the priority queue.



This lesson
In-place heap sort algorithm. For this, we will
first turn a given array into a heap by
permuting its elements.



Turn Array into a Heap

BuildHeap(A[1 . . . n])
size← n
for i from ⌊n/2⌋ downto 1:

SiftDown(i)



We repair the heap property going from
bottom to top.

Initially, the heap property is satisfied in
all the leaves (i.e., subtrees of depth 0).
We then start repairing the heap
property in all subtrees of depth 1.
When we reach the root, the heap
property is satisfied in the whole tree.
Online visualization
Running time: O(n log n)

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html


We repair the heap property going from
bottom to top.
Initially, the heap property is satisfied in
all the leaves (i.e., subtrees of depth 0).

We then start repairing the heap
property in all subtrees of depth 1.
When we reach the root, the heap
property is satisfied in the whole tree.
Online visualization
Running time: O(n log n)

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html


We repair the heap property going from
bottom to top.
Initially, the heap property is satisfied in
all the leaves (i.e., subtrees of depth 0).
We then start repairing the heap
property in all subtrees of depth 1.

When we reach the root, the heap
property is satisfied in the whole tree.
Online visualization
Running time: O(n log n)

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html


We repair the heap property going from
bottom to top.
Initially, the heap property is satisfied in
all the leaves (i.e., subtrees of depth 0).
We then start repairing the heap
property in all subtrees of depth 1.
When we reach the root, the heap
property is satisfied in the whole tree.

Online visualization
Running time: O(n log n)

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html


We repair the heap property going from
bottom to top.
Initially, the heap property is satisfied in
all the leaves (i.e., subtrees of depth 0).
We then start repairing the heap
property in all subtrees of depth 1.
When we reach the root, the heap
property is satisfied in the whole tree.
Online visualization

Running time: O(n log n)

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html


We repair the heap property going from
bottom to top.
Initially, the heap property is satisfied in
all the leaves (i.e., subtrees of depth 0).
We then start repairing the heap
property in all subtrees of depth 1.
When we reach the root, the heap
property is satisfied in the whole tree.
Online visualization
Running time: O(n log n)

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html


In-place Heap Sort

HeapSort(A[1 . . . n])
BuildHeap(A) {size = n}
repeat (n− 1) times:

swap A[1] and A[size]
size← size− 1
SiftDown(1)



Building Running Time
The running time of BuildHeap is
O(n log n) since we call SiftDown for
O(n) nodes.

If a node is already close to the leaves,
then sifting it down is fast.
We have many such nodes!
Was our estimate of the running time of
BuildHeap too pessimistic?



Building Running Time
The running time of BuildHeap is
O(n log n) since we call SiftDown for
O(n) nodes.
If a node is already close to the leaves,
then sifting it down is fast.

We have many such nodes!
Was our estimate of the running time of
BuildHeap too pessimistic?



Building Running Time
The running time of BuildHeap is
O(n log n) since we call SiftDown for
O(n) nodes.
If a node is already close to the leaves,
then sifting it down is fast.
We have many such nodes!

Was our estimate of the running time of
BuildHeap too pessimistic?



Building Running Time
The running time of BuildHeap is
O(n log n) since we call SiftDown for
O(n) nodes.
If a node is already close to the leaves,
then sifting it down is fast.
We have many such nodes!
Was our estimate of the running time of
BuildHeap too pessimistic?



Building Running Time
# nodes

1
2
...

≤ n/4
≤ n/2

T(SiftDown)
log2 n

...
2
1

T(BuildHeap) ≤ n
2 · 1 +

n
4 · 2 +

n
8 · 3 + . . .

≤ n ·
∞∑
i=1

i
2i = 2n



Building Running Time
# nodes

1
2
...

≤ n/4
≤ n/2

T(SiftDown)
log2 n

...
2
1

T(BuildHeap) ≤ n
2 · 1 +

n
4 · 2 +

n
8 · 3 + . . .

≤ n ·
∞∑
i=1

i
2i = 2n



Estimating the Sum
1
2

1
4

1
8

1
16 . . .

1
1
2 +

1
4 +

1
8 +

1
16 + . . . =

∞∑
k=1

1
2k = 1

1
1/2
1/4
1/8

. . .
1
2 +

2
4 +

3
8 +

4
16 + . . . =

∞∑
k=1

k
2k = 2



Estimating the Sum
1
2

1
4

1
8

1
16 . . .

1
1
2 +

1
4 +

1
8 +

1
16 + . . . =

∞∑
k=1

1
2k = 1

1
1/2
1/4
1/8

. . .

1
2 +

2
4 +

3
8 +

4
16 + . . . =

∞∑
k=1

k
2k = 2



Estimating the Sum
1
2

1
4

1
8

1
16 . . .

1
1
2 +

1
4 +

1
8 +

1
16 + . . . =

∞∑
k=1

1
2k = 1

1
1/2
1/4
1/8

. . .

1
2 +

2
4 +

3
8 +

4
16 + . . . =

∞∑
k=1

k
2k = 2



Estimating the Sum
1
2

1
4

1
8

1
16 . . .

1
1
2 +

1
4 +

1
8 +

1
16 + . . . =

∞∑
k=1

1
2k = 1

1
1/2
1/4
1/8

. . .
1
2 +

2
4 +

3
8 +

4
16 + . . . =

∞∑
k=1

k
2k = 2



Partial sorting

Input: An array A[1 . . . n], an integer
1 ≤ k ≤ n.

Output: The last k elements of a sorted
version of A.

Can be solved in O(n) if k = O( n
log n)!



Partial sorting

Input: An array A[1 . . . n], an integer
1 ≤ k ≤ n.

Output: The last k elements of a sorted
version of A.

Can be solved in O(n) if k = O( n
log n)!



PartialSorting(A[1 . . . n], k)
BuildHeap(A)
for i from 1 to k:

ExtractMax()

Running time: O(n + k log n)



PartialSorting(A[1 . . . n], k)
BuildHeap(A)
for i from 1 to k:

ExtractMax()

Running time: O(n + k log n)



Summary

Heap sort is a time and space efficient
comparison-based algorithm: has running
time O(n log n), uses no additional space.



Outline
1 Binary Trees

2 Basic Operations

3 Complete Binary Trees

4 Pseudocode

5 Heap Sort

6 Final Remarks



0-based Arrays
Parent(i)
return ⌊ i−1

2 ⌋

LeftChild(i)
return 2i + 1

RightChild(i)
return 2i + 2



Binary Min-Heap

Definition
Binary min-heap is a binary tree (each node
has zero, one, or two children) where the
value of each node is at most the values of
its children.
Can be implemented similarly.



d-ary Heap
In a d-ary heap nodes on all levels
except for possibly the last one have
exactly d children.

The height of such a tree is about
logd n.
The running time of SiftUp is
O(logd n).
The running time of SiftDown is
O(d logd n): on each level, we find the
largest value among d children.



d-ary Heap
In a d-ary heap nodes on all levels
except for possibly the last one have
exactly d children.
The height of such a tree is about
logd n.

The running time of SiftUp is
O(logd n).
The running time of SiftDown is
O(d logd n): on each level, we find the
largest value among d children.



d-ary Heap
In a d-ary heap nodes on all levels
except for possibly the last one have
exactly d children.
The height of such a tree is about
logd n.
The running time of SiftUp is
O(logd n).

The running time of SiftDown is
O(d logd n): on each level, we find the
largest value among d children.



d-ary Heap
In a d-ary heap nodes on all levels
except for possibly the last one have
exactly d children.
The height of such a tree is about
logd n.
The running time of SiftUp is
O(logd n).
The running time of SiftDown is
O(d logd n): on each level, we find the
largest value among d children.



Summary
Priority queue supports two main
operations: Insert and ExtractMax.

In an array/list implementation one
operation is very fast (O(1)) but the
other one is very slow (O(n)).
Binary heap gives an implementation
where both operations take O(log n)
time.
Can be made also space efficient.



Summary
Priority queue supports two main
operations: Insert and ExtractMax.
In an array/list implementation one
operation is very fast (O(1)) but the
other one is very slow (O(n)).

Binary heap gives an implementation
where both operations take O(log n)
time.
Can be made also space efficient.



Summary
Priority queue supports two main
operations: Insert and ExtractMax.
In an array/list implementation one
operation is very fast (O(1)) but the
other one is very slow (O(n)).
Binary heap gives an implementation
where both operations take O(log n)
time.

Can be made also space efficient.



Summary
Priority queue supports two main
operations: Insert and ExtractMax.
In an array/list implementation one
operation is very fast (O(1)) but the
other one is very slow (O(n)).
Binary heap gives an implementation
where both operations take O(log n)
time.
Can be made also space efficient.


	Binary Trees
	Basic Operations
	Complete Binary Trees
	Pseudocode
	Heap Sort
	Final Remarks

