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Definition
Binary max-heap is a binary tree (each node
has zero, one, or two children) where the
value of each node is at least the values of
its children.

In other words
For each edge of the tree, the value of the
parent is at least the value of the child.
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SiftUp
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for this, we
swap the prob-
lematic node
with its parent
until the prop-
erty is satisfied
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one edge



SiftUp
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SiftUp
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ExtractMax
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SiftDown
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which automat-
ically fixes one
of the two bad
edges
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ority and let the
changed ele-
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down depend-
ing on whether
its priority de-
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creased
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ement to ∞,
let it sift up,
and then extract
maximum
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now, call
ExtractMax()
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Summary

GetMax works in time O(1), all other
operations work in time O(tree height)

we definitely want a tree to be shallow
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How to Keep a Tree Shallow?

Definition
A binary tree is complete if all its levels are
filled except possibly the last one which is
filled from left to right.



Example: complete binary tree
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Example: not complete binary tree
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Example: not complete binary tree



First Advantage: Low Height

Lemma
A complete binary tree with n nodes has
height at most O(log n).



Proof
Complete the last level to get a full
binary tree on n′ ≥ n nodes and the
same number of levels ℓ.
Note that n′ ≤ 2n.
Then n′ = 2ℓ − 1 and hence
ℓ = log2(n′ + 1) ≤ log2(2n + 1) =
O(log n).



Second Advantage: Store as Array
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What do we pay for these advantages?

We need to keep the tree complete.
Which binary heap operations modify
the shape of the tree?
Only Insert and ExtractMax
(Remove changes the shape by calling
ExtractMax).
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last level and let
it sift up
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General Setting

maxSize is the maximum number of
elements in the heap

size is the size of the heap
H[1 . . .maxSize] is an array of length
maxSize where the heap occupies the
first size elements
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Parent(i)
return ⌊ i

2⌋

LeftChild(i)
return 2i

RightChild(i)
return 2i + 1



SiftUp(i)
while i > 1 and H[Parent(i)] < H[i]:

swap H[Parent(i)] and H[i]
i← Parent(i)



SiftDown(i)
maxIndex← i
ℓ← LeftChild(i)
if ℓ ≤ size and H[ℓ] > H[maxIndex]:

maxIndex← ℓ

r← RightChild(i)
if r ≤ size and H[r] > H[maxIndex]:

maxIndex← r
if i ̸= maxIndex:

swap H[i] and H[maxIndex]
SiftDown(maxIndex)



Insert(p)
if size = maxSize:

return ERROR
size← size + 1
H[size]← p
SiftUp(size)



ExtractMax()
result← H[1]
H[1]← H[size]
size← size− 1
SiftDown(1)
return result



Remove(i)
H[i]←∞
SiftUp(i)
ExtractMax()



ChangePriority(i, p)
oldp← H[i]
H[i]← p
if p > oldp:

SiftUp(i)
else:

SiftDown(i)



Summary
The resulting implementation is

fast: all operations work in time
O(log n) (GetMax even works in O(1))

space efficient: we store an array of
priorities; parent-child connections are
not stored, but are computed on the fly
easy to implement: all operations are
implemented in just a few lines of code
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Sort Using Priority Queues

HeapSort(A[1 . . . n])
create an empty priority queue
for i from 1 to n:

Insert(A[i])
for i from n downto 1:

A[i]← ExtractMax()



The resulting algorithms is
comparison-based and has running time
O(n log n) (hence, asymptotically
optimal!).

Natural generalization of selection sort:
instead of simply scanning the rest of
the array to find the maximum value,
use a smart data structure.
Not in-place: uses additional space to
store the priority queue.
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optimal!).
Natural generalization of selection sort:
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This lesson
In-place heap sort algorithm. For this, we will
first turn a given array into a heap by
permuting its elements.



Turn Array into a Heap

BuildHeap(A[1 . . . n])
size← n
for i from ⌊n/2⌋ downto 1:

SiftDown(i)



We repair the heap property going from
bottom to top.

Initially, the heap property is satisfied in
all the leaves (i.e., subtrees of depth 0).
We then start repairing the heap
property in all subtrees of depth 1.
When we reach the root, the heap
property is satisfied in the whole tree.
Online visualization
Running time: O(n log n)

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html
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In-place Heap Sort

HeapSort(A[1 . . . n])
BuildHeap(A) {size = n}
repeat (n− 1) times:

swap A[1] and A[size]
size← size− 1
SiftDown(1)



Building Running Time
The running time of BuildHeap is
O(n log n) since we call SiftDown for
O(n) nodes.

If a node is already close to the leaves,
then sifting it down is fast.
We have many such nodes!
Was our estimate of the running time of
BuildHeap too pessimistic?
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Partial sorting

Input: An array A[1 . . . n], an integer
1 ≤ k ≤ n.

Output: The last k elements of a sorted
version of A.

Can be solved in O(n) if k = O( n
log n)!
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Input: An array A[1 . . . n], an integer
1 ≤ k ≤ n.

Output: The last k elements of a sorted
version of A.

Can be solved in O(n) if k = O( n
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PartialSorting(A[1 . . . n], k)
BuildHeap(A)
for i from 1 to k:

ExtractMax()

Running time: O(n + k log n)



PartialSorting(A[1 . . . n], k)
BuildHeap(A)
for i from 1 to k:

ExtractMax()

Running time: O(n + k log n)



Summary

Heap sort is a time and space efficient
comparison-based algorithm: has running
time O(n log n), uses no additional space.
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0-based Arrays
Parent(i)
return ⌊ i−1

2 ⌋

LeftChild(i)
return 2i + 1

RightChild(i)
return 2i + 2



Binary Min-Heap

Definition
Binary min-heap is a binary tree (each node
has zero, one, or two children) where the
value of each node is at most the values of
its children.
Can be implemented similarly.



d-ary Heap
In a d-ary heap nodes on all levels
except for possibly the last one have
exactly d children.

The height of such a tree is about
logd n.
The running time of SiftUp is
O(logd n).
The running time of SiftDown is
O(d logd n): on each level, we find the
largest value among d children.
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Summary
Priority queue supports two main
operations: Insert and ExtractMax.

In an array/list implementation one
operation is very fast (O(1)) but the
other one is very slow (O(n)).
Binary heap gives an implementation
where both operations take O(log n)
time.
Can be made also space efficient.
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