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Definition
A disjoint-set data structure supports the
following operations:

MakeSet(x) creates a singleton set {x}

Find(x) returns ID of the set
containing x:

if x and y lie in the same set, then
Find(x) = Find(y)
otherwise, Find(x) ̸= Find(y)

Union(x, y) merges two sets containing
x and y
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Preprocess(maze)
for each cell c in maze:

MakeSet(c)
for each cell c in maze:

for each neighbor n of c:
Union(c, n)

IsReachable(A,B)
return Find(A) = Find(B)
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For simplicity, we assume that our n objects
are just integers 1, 2, . . . , n.



Using the Smallest Element as ID

Use the smallest element of a set as
its ID

Use array smallest[1 . . . n]:
smallest[i] stores the smallest element
in the set i belongs to
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Example

{9, 3, 2, 4, 7} {5} {6, 1, 8}

1 2 3 4 5 6 7 8 9
1 2 2 2 5 1 2 1 2smallest



MakeSet(i)
smallest[i]← i

Find(i)
return smallest[i]

Running time: O(1)
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Union(i, j)
i_id← Find(i)
j_id← Find(j)
if i_id = j_id:

return
m← min(i_id, j_id)
for k from 1 to n:

if smallest[k] in {i_id, j_id}:
smallest[k]← m

Running time: O(n)
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Current bottleneck: Union

What basic data structure allows for
efficient merging?
Linked list!
Idea: represent a set as a linked list, use
the list tail as ID of the set
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Pros:

Running time of Union is O(1)
Well-defined ID

Cons:

Running time of Find is O(n) as we
need to traverse the list to find its tail
Union(x, y) works in time O(1) only if
we can get the tail of the list of x and
the head of the list of y in constant
time!
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Find(9) goes through all elements



Example: merging two lists
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can we merge in a different way?



Example: merging two lists

79 3 2 4

86 1



Example: merging two lists

79 3 2 4

86 1



Example: merging two lists
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instead of a list we get a tree



Example: merging two lists

79 3 2 4

86 1
we’ll see that representing sets as

trees gives a very efficient im-
plementation: nearly constant

amortized time for all operations
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